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Particle motion in a two-wave field is considered as a model for studying the kinetic (transport) prop-
erties inside the stochastic layer. The existence of an exact renormalization invariance of the separatrix
with respect to the perturbation parameter and the approximate renormalization invariance for the exact
equation of motion near a saddle point is shown. High accuracy symplectic integration is used to obtain
the distribution function, its moments, and transport exponents. Scaling properties and anomalous
transport have been found. It is shown that, depending on the parameters of the system, there is a possi-
bility of modifying the fine (islands) structure of the stochastic layer, which leads to variations of the
transport properties from the anomalous to the normal (Gaussian) ones.

PACS number(s): 05.45.+b, 47.52.+j,47.53.+n

I. INTRODUCTION

The separatrix of a Hamiltonian system splits if a
periodic perturbation of a generic type influences the sys-
tem [1]. It was shown in different ways that such a
phenomenon leads to a replacement of the separatrix of
the unperturbed system by a stochastic (ergodic) layer in
the perturbed one. The layer forms a narrow band with a
complicated fine structure in the phase space of the sys-
tem [2-10]. It may be worth mentioning that numerous
applications of the phenomenon of stochastic layer oc-
currence draw special attention to its properties (for a re-
view see [11]). Among them is the problem of particle
kinetics inside the stochastic layer, which has attracted
researchers from the very beginning [2,12—14]. The main
difficulty in the investigation of the transport (kinetic)
properties of particles inside the stochastic layer can be
formulated in an informal way: generally speaking, the
chaotic motion component of phase space is strongly
nonuniform with fractal (or maybe multifractal) alternat-
ing of fine stochastic sublayers with Kol’mogorov-
Arnol’d-Moser stability islands. The motion of entangled
particles between the islands constitutes the basis of the
particle transport inside the stochastic layer.

An important area of application of the stochastic lay-
er comes from the fusion program, where the so-called
ergodic divertor is created and studied in different
tokamaks to resolve the problem of high energy deposi-
tion from particles at the plasma edge [15]. One
remembers the beginning of the tokamak and stellarator
eras when the problem of magnetic separatrix destruction
initiated the research of chaos and homoclinics. A more
recent interest in the problem is strongly related to
deeper and finer properties of long time asymptotics of
particle kinetics inside the stochastic layer. It is impor-
tant for a description of the poloidal particle motion in
the ergodic divertor of the tokamak. Recently a fraction-
al type of kinetic equation was introduced in a set of pub-
lications [16] where a generalization of the ideas of Lévy
flights [17,18] and fractal time [19] was described. Nu-
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merical analysis [20] and experimental data [21-23] pro-
vide a serious foundation for the fractional-type space-
time kinetics. In Ref. [23] quantitative results were ob-
tained for different distributions.

It is clear from the earlier publications [24,25,12] that
transport properties of chaotic dynamics can be anoma-
lous because of the presence of islands, the boundaries of
islands are “sticky,” and there are power laws in the dis-
tribution function, correlation functions, etc. Contem-
porary analysis of the anomalous transport becomes more
sophisticated (see, for example, reviews [26,27]).

The aim of this article is twofold. The first is to ana-
lyze scaling properties for the separatrix map introduced
in [2] (see also [3,11]). In Sec. II scaling properties of the
particle dynamics inside the stochastic layer will also be
studied. The existence of self-periodicity on the perturba-
tion parameter rescaling will be shown. This property is
studied analytically in Sec. III and numerically in Sec.
IV. Scaling of the island chain will be revisited in Sec. V.
The second aim is to present the simulations of the parti-
cle kinetics in a stochastic layer in Sec. VI and to show
how its anomalous properties are dependent on the phase
space pattern character in Secs. VI and VII. A bizarre
feature of the kinetics is revealed in its self-similarity,
which corresponds, as it is shown in this article, to the
fractal time wandering process. There is a strong depen-
dence of the level of self-similarity and intermittency on
the parameters of the system. A specific case of the
anomalous kinetics reduction to a regular (Gaussian) one
is found in Sec. VIII.

II. THE BASIC MODEL AND SCALING PROPERTIES
OF THE SEPARATRIX MAP

Consider the basic model of a particle motion in the

two-wave potential with the Hamiltonian
H =p?/2—wicosx —ewgcos(x —vt+Xx) (2.1)

and the equation of motion
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% + odsinx = —ewfsin(x —vt+x) , (2.2)

where v is the perturbation frequency, € is the dimension-
less level of perturbation, w is the frequency of small am-
plitude oscillations, and ) is the constant phase of the
perturbation.

The unperturbed motion is described by the Hamiltoni-
an

Hy,=p?/2—wicosx . (2.3)

There are elliptic points at x =x, =2mn, p =0 (0 points)
and hyperbolic points at x =x,=(2n +1)w, p =0 (X
points) in the phase space (x,p). The separatrix of the
unperturbed motion corresponds to the unperturbed en-
ergy H, = o}

Below, the motion of the system (2.2) near the unper-
turbed separatrix map [2,3,11]

h,,1=h,+eK,sing, ,

by 1=, +(v/0o)In(32/\h, 4]), (2.4)
where h, =(H, —03)/o} is the dimensionless oscillation
energy, ¢, =vt, is the phase at the moment ¢, when the
particle is in the unperturbed separatrix vicinity, and » is
the number of an iteration step. The parameter K, is
equal to

K, =4m(v/wy)’exp(7ma,v/2wy)/sinh(1v/wy) . (2.5

The value €K corresponds to Melnikov’s integral [1] and
K is its part that does not depend on €. The parameter
K, depends on n through the o,==*1 only: o,=1 if
Xx,>0and o,=—1 if X, <0. This condition can be for-
mulated using the variable

1, h, >0
Tn417 | =1, h,, <0

ifo,=1and
1, h,41<0
Tnt+1= 1 =1, h,.,>0

ifo,=—1.

The map (2.4) has been studied for more than two de-
cades by numerous researchers. In particular, it is known
that there is an ergodic layer for an arbitrarily small level
of perturbation €. The width of the ergodic layer de-
pends on parameters € and v/, It was shown recently
[4] that for v/wy>>0 the width of the ergodic layer can
still be narrow even for the values of € >>1. Here the at-
tention is focused on the dependence of the separatrix
map on the perturbation parameter e.

Let us consider the scale tranform of € and 4

€e—>Ae€, h,—Anh, (2.6)

with a scaling parameter A,. The map (2.4) transforms
into

hn+1=hn +eK Sin¢n N

2.7
¢n+1:¢n +(V/w0)ln(32/|hn+1‘ )—(v/a)o)ln)\e .
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Comparing the maps (2.6) and (2.7) one can see their
identity in the cylinder phase space (h,¢ mod 2) if

(v/wg)nA =2mm, m=0,%x1,%£2,... (2.8)

because ¢ is a phase variable. Equation (2.8) defines such
values of the scaling parameter A, which preserve the

separatrix map
Adm)=exp(2rmawy/v) . (2.9)

Using expressions (2.6) and (2.9), one can define the re-
normalization separatrix map transform (RSMT). Map
(2.6) is invariant under the following renormalization
transform:

R
All)=exp(2may/v) ,

¢ €E—>€A (1), h—hA 1)
(2.10)

where A (1) is defined from (2.9) for m =1. It is impor-
tant to mention that the renormalization group transform
RE includes a renormalization of energy scale by a factor
A[1) in correspondence with (2.10). This implies the
same kind of self-similarity for resonances of the separa-
trix map.

Let us say that the condition

¢n +gq =¢n +2ms

defines the resonance of order (g,s) if g and s are non-
negative integers. Then interacting of the second equa-
tion of (2.4) yields

(2.11)

q
¢,,+q=¢,,+wl S In[32/1h, 4 ;(g,9)]] . (2.12)
0 j=1
Let us consider a formal transformation
h=h'/\ (2.13)

and substitute (2.13) into (2.12). It gives

q
Snrq=n+t—— 3 [32/|h;(g,8)| ]+ ——g InA .
Do ;=1 @9

(2.14)

After renormalization of the set of resonance values
h,(g,s), the same g and a different s occur if

(2.15)

for any s'=mgq with integer m. The minimal value of m
is m =1, which gives

Mg,q)=exp(2mwy/v)=A, . (2.16)

In the case (2.15) the equation of motion (2.14) is reduced
to
Pprq— @, =2m(s —s")=2ms", (2.17)

which is a resonant condition for the renormalized ener-
gies (2.13).
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III. RENORMALIZATION NEAR THE X POINT

The results of the preceding section are accurate for
the separatrix map. Since the separatrix map is an ap-
proximation that works to some extent near the separa-
trix, it is useful to obtain scaling properties of a system in
a straightforward way from the Hamiltonian of a system.

Consider a periodically perturbed Hamiltonian system

H(x,p,t)=Hy(x,p)+€eH,(x,t) , (3.1

where H is the unperturbed Hamiltonian, € is the di-
mensionless perturbation parameter (e<<1), and H, is
periodic

H, (x,t +T)=H,(x,1) (3.2)

with a period T'=2w/v. Let the point x =0, p =0 be the
X point of the unperturbed Hamiltonian H,, thus the ex-
pansion

Ho(x,p)=%(p2—-co(2,x2) (3.3)

is valid near the point. With (3.1) and (3.3) we have near
the X point up to a constant additive term

H(x,p,t)=1(p>—owjx?)+eH,(x,1) . (3.4)

The general idea of simplification of the dynamics near
the separatrix and the X point is to approximate x in the
perturbation term H(x,t¢) by the unperturbed expression
for x which comes from (3.3). This gives simply

a)ot=a)0fdx/x=fdx/(2h —x?2)172

=In|x +(2h +x2)?|+const  (3.5)
with the dimensionless energy
h=(H,—wd)/w} . (3.6)
It follows from (3.5) that the transform
h=Ah,, x=A"%x,, A>0 (3.7
leads to the time shift
A= aigln)» . (3.8)

Let this shift be equal to the period T of the perturbation
H(x,t). Then

A=exp(2w,T)=exp(4mwy/v) . (3.9)

Now let us add to (3.7) the transformation of momen-
tum p =A!"?p, and apply the full transform
R,: x=A"x,, p=AY%p,, H=M\H, (3.10)
to the initial Hamiltonian (3.1) in the vicinity of the X
point, i.e., with H; in the form (3.3). The transformation
(3.10) is canonical and gives the Hamiltonian (up to a
constant)
H,=1p3:—ofxi)+eH (M *x,,t), (3.11)

where
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e=Aey (3.12)

and periodicity (3.2) has been used.

The obtained result can be formulated as follows: the
scaling transformation (3.12) of the perturbation parame-
ter preserves the form of the Hamiltonian of a system in
the vicinity of the X point with the rescaling (3.7) of vari-
ables if one takes A of an appropriate value (3.9) depen-
dent on the period of the perturbation H,;. Therefore
Egs. (3.9)-(3.12) form the renormalization group near
the X point. Comparing this result to the exact RSMT
(2.9) and (2.10) one has

A=A%1) (3.13)

or

R,=R?. (3.14)
Equations (3.13) and (3.14) make a connection between
renormalization properties of the separatrix map and the
initial Hamiltonian. In particular, applying A1) in
(3.12) instead of A we have

H, =4(p} —opxi ) +e Hi(Axy ,t+T/2),  (3.15)
which means a time shift per half a period of the pertur-
bation.

Taking into account the pictures obtained in the fol-
lowing section by simulation, one should note that the
above renormalization transform (3.10)-(3.12) is valid for
the phase portrait of a system only near the X point. Far
from the X point the transform (3.10)-(3.12) changes the
system’s phase portrait topology. Numerical simulatign
of the existence of the renormalization group R, or R,
can be realized in a simple way. One should simply re-
place the parameter € in the Hamiltonian by eA’(1) and
compare the obtained phase portraits. This will be
demonstrated in the next section.

IV. SIMULATION
OF THE RENORMALIZATION TRANSFORM

In order to obtain a good accuracy of computations
and resolve a fine structure of the distribution function in
the phase space, the symplectic integrator method was
applied [28] with a simplification owing to the fact that
the Hamiltonian (2.1) was separable. Special testing was
done for three different realizations of the symplectic in-
tegrator: fourth order by Forest and Ruth [29] and fifth-
order optimal by McLachlan and Pan [30]. The fifth-
order optimal was selected with time step 0.02 and with a
numerical data processor stack 0.005. With double pre-
cision a test orbit near the separatrix displayed the accu-
racy of computations of the order 10~ for the computa-
tional time ¢ =1.5X 10°.

Figures 1(a) and 1(b) display phase portraits of the
separatrix map (2.4) for positive velocity x >0 and for
two different values of € such that €,=2A2(1)e, with
A(1)=exp(27/5.4)=3.2013. ... In spite of that, the
difference between the values of € is of one order (approx-
imately), the two phase portraits in Fig. 1 are almost
identical, and their slight deviation is due to A (1) being
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taken with a finite number of digits of accuracy.

In Fig. 2 we present two Poincaré sections for the ini-
tial equation of motion (2.2) in the vicinity of the X point
(0,7r). The values of € and y for the two cases in Figs.
2(a) and 2(b) are €,=0.01, y=0 and €, =A(1)e, =0.032,
x=m. Two pictures in Fig. 2 are topologically similar be-
cause the difference in €, and €, corresponds to the re-
normalization scaling parameter A (1). At the same time
there is a rescaling of sizes along the (x,p) axes. The
difference between the portraits in Figs. 1 and 2 corre-
sponds to different phase spaces: (h,¢) in Fig. 1 and
(p,x) in Fig. 2. The important step in preparing Fig. 2 is
a high resolution plot that creates a possibility to observe
a similarity between Figs. 2(a) and 2(b) not only in the to-
pological structure, but to indicate dark strips at similar
locations as an indication of invisible cantori.

The renormalization property of the dynamics in a sto-
chastic layer in the vicinity of the X point is a general

0.004

-0.065 s oo
0.0 ® 6.28

FIG. 1. Structure of an ergodic layer as described by the
separatrix mapping (2.4) in the phase space (¢(mod2w),h) with
v=5.4, wy=1, and for two values of €: (a) €=0.003 124 and (b)
€=0.032. The number of iterations is 2 X 10° for each plot.
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property of systems of the type (3.1), whereas the scaling
transformation parameter A, can be of different forms.
For example, consider two other Hamiltonians

H=p?/2—a*?/2+x*/4—ecos(x —vt+¥) ,
H=p?/2—a’x?/2+x*/4+ Lex*sin(vt +x) .

4.1)
(4.2)

In correspondence with the general consideration in Sec.
II1, we have to find the coefficient before the —x2/2 term
in the expansion near the X point. In (3.11) it is w3,
which coincides with a square, small amplitude oscilla-
tion frequency. For the cases (4.1) and (4.2) this
coefficient is a? and therefore the renormalization param-
eter is

Al1)=exp(2ma /v)
instead of (2.10).

4.3)

27 X 3.6

FIG. 2. Poincaré section of motion for Eq. (2.2) in the vicini-
ty of the X point (x =, p =0) with the same v, as in Fig. 1.
(a) €,=0.01, y=0 and (b) €,=0.032, y=m. The length of the
orbits is 10° periods of perturbation for each of the four trajec-
tories.
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Our numerical simulation confirms the coincidence of
the topological pattern near the X point (with the phase
shift 7) before and after the rescaling of the perturbation
parameter

e—eexp(2ma /v) . (4.4)

The values a =1, v=5.4, and €=0.031 are considered to
correspond to A (1)=3.2013. . ..

In the next section the scaling properties of the islands
in the phase portrait will be discussed.

V. SCALING OF SUBISLANDS

The topological structure of the stochastic layer is
complicated and depends significantly on values of the
perturbation parameter and the frequency. One such
property —the persistence of the topology after rescaling
e—was demonstrated above. There are different sets of
islands inside the stochastic layer, which are responsible
for different properties of trajectories. Renormalization
properties of chaotic dynamics inside the stochastic layer
have been extensively studied in [4,31-33], especially in
relation to the problem of islands-around-islands particles
transport [31,12,34—-36]. The plot in Fig. 3 demonstrates
different roles of islands and their influence upon the par-
ticle transport.

The picture in Fig. 3(a) provides a full Poincaré section
for six different orbits with a length of 3X 10° periods of
perturbation. Dark places correspond to regions of the
orbit stickiness. The darker the region the longer the
sticky event. Darkness in the middle part of the plot cor-
responds to “flights.” Long, almost regular parts of the
orbit are plotted in Fig. 3(b) where full (infinite in x)
phase space (p,x) is considered, in contrast to Fig. 3(a),
where the phase space is cylindrical (p,x —mod27). The
orbit in Fig. 3(b) corresponds to one of the orbits present-
ed in Fig. 3(a) and the difference is only in the way the
Poincaré section is plotted. The darkness around the
main island on the bottom part in Fig. 3(a) corresponds
to the orbit trapped in the area of a narrow boundary lay-
er of the island. Competition between trappings and
flights results in a transport law

(Ux —(x))~e#

with a transport exponent u that can be different from
1

the normal law case = 1.

In the past few years there were many studies of the
influence of the islands-around-islands structure on the
anomalous transport by a renormalization method
[16,20] that introduces two different scaling parameters:
Ag, which corresponds to the area S scaling of islands of
different generations, and A, which corresponds to a
characteristic time scaling for the same islands. It was
proposed in [20] to use A, as the scaling parameter for
periods of last invariant curves inside the islands set.
Other time scales can be used also, but there exists a
functional connection between different time sets and the
A corresponding to these sets.

To illustrate the existence of scaling we consider a set
of subislands that belong to the main island on the bot-
tom of Fig. 3(a). Variables related to the island values

(5.1)
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will be labeled 0. Variables for the next generations of
the island will be labeled 1,2,.... Figure 4 presents
close-ups of a few island generations. In analogy to [20]
we prepare Table I with different values of the island-set
properties.

Let AS; be the area and T be the period of the last in-
variant curve inside an island of the kth generation.
Table I shows the values of AS, and T}, the number of
islands g in the chain of islands and different ratios. We
introduce also the full area 8S; =n; AS of islands in the
kth generation chain. Table I makes evident the ex-
istence of scaling properties

5Sk+1:)\555k, Tk+1:}\’TTk (5.2)
with scaling parameters
Ag~0.07, Ap~8.9 (5.3)

-2
x10%

FIG. 3. Poincaré section of seven orbits indicates flights and
trapping as dark regions (a) in cylindrical phase space and (b) in
the infinite phase space. v=5.4, wy=1, €=0.9, and y=0. The
length of the orbits is 10° periods of perturbation.
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07 ‘ T (a)

-0.8 /y

1.5 X 2.5

0.45

03| _ ] |
1.77 X 1.87

0.428 ey : , T(C)

0.41

1.794 x 1.806

FIG. 4. Poincaré sections with islands of three generations
(a), (b), and (c) for islands on the bottom of Fig. 3(a). The length
of the orbits is 2.1X 10° periods of perturbation.

approximately independent of k. One can observe small
deviations from the constant values (5.3), which do not
change the leading exponential dependence (5.2).

Some reasons for the observed dispersion of values of
Ag,Ar can be mentioned: (i) we have considered only the
first few generations, which is not enough to get a conver-
gency; (ii) it could be a multifractal distribution of
different values of Ag, A, rather than a one-value fractal.
The latter situation will be discussed further in the next
section.

VI. DISTRIBUTION FUNCTION

There are two ways to consider particle transport in
the stochastic layer: in cylindrical space (x mod2) or in
phase space infinite in x. Actually both of these presenta-
tions can be connected. Below the transport infinite in x
is studied and we are interested in the probability func-
tion P(x,t) to find a particle with position x at the time
incident ¢ inside the stochastic layer. There is also a nor-
malization condition

[Px,ndx=1. (6.1)

For large time asymptotics the function P(x,t) is well
representative because the stochastic layer is narrow
along the momentum p and one can neglect a transport
process along p.

It is worth mentioning that the anomalous transport in
the p direction for the standard map has been observed in
a number of works [12,37-39] for the values of a pertur-
bation parameter near a so-called threshold of transition
to the global chaos or near the accelerated modes. In
[12] there were also estimates for the power laws of the
exit time distribution in the stochastic layer. Below, the
anomalous transport features will be considered for the
stochastic layer strictly (no transport along the p direc-
tion) with the main stress on fractal space-time properties
inside the layer.

In addition to the evolution of the distribution function
we consider its shifted moments as a function of time

R,()=((x—(x))™) (m>1). 6.2)

Expecting a power law dependence on x for P(x,t), it is
worth mentioning that the powerwise tail distribution
functions are “inconvenient” to observe for the dynami-
cal chaos. One should be ready to find different inter-
mediate asymptotics for the exponents and strong fluc-
tuations (see the detailed discussion in [36]). In addition
to this difficulty, long flights and traps lead to a very slow
convergence of the averaging procedure, which imposes a
significant increase in the number of orbits over which an
averaging is performed. Below we will illustrate these
comments by presenting two different sets of data for two
time scales.

The first set of data is related to the time length
¢t =10*T and 3600 trajectories. The simulation was per-
formed for v=>5.4, wy=1, and €=0.9. The Poincaré sec-
tion for a few orbits is shown in Fig. 3(a). The distribu-
tion function P(x,t) for t =10*T, averaged over 3600 tra-
jectories, is displayed in Fig. 5. Figure 5(a) features the
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TABLE 1. Self-similarity of three generations of islands.
k qi Tk/T Tk+1/Tk ASk 1% 5Sk=nkASk SSkH/SSk
0 1 6.82 8.98 1 8.98
1 7 6.1X10 8.94 9.45X 1072 1X7 6.62X107! 0.074
2 9 5.4X10? 8.85 6.55X10™* 1X7X9 4.13X 1072 0.062
3 9 4.8%X10° 8.89 5.44X107¢ 1X7X9X9 3.08X1073 0.075
existence of a long tail, which corresponds to fast moving P(x,t)~1/x%t1 | (6.3)

(ballistic) particles. A log-log plot of the tail is presented
in Fig. 5(b). The graph shows a close to the linear depen-
dence on log;,x with oscillations that increase at the end
of the tail due to fewer events. It describes the initial
stage of the distribution function evolution.

After a longer time the particles distribution becomes
more symmetric, which is illustrated by the second set of
data (Fig. 6) obtained after averaging over 7000 initial
conditions with the length of the orbits 10°T each. In
spite of the long time of observation there are still large
fluctuations because of particle trappings. The distribu-
tion function has a power-tail-like tail for the first set of
data. If we suppose that for large x the asymptotics is
valid

86210

P(x,t)

x10%

10

P(x,t)

1 2 3 x10*
X-Xmax

FIG. 5. Distribution function P(x,t) versus x for v=5.4,
wo=1, €=0.9, y=0, and time incident ¢t = 10*T. The data set is
collected from 3600 trajectories. (a) The histogram of P(x,?).
(b) Log-log plot of the tail of P(x,z?).

then a~(0.3%0.1) for the first set of data and the deter-
mination of a is not reliable for the second set of data in
spite of the very large statistics (7000 orbits) and long
computational time (10°T). This does not permit us to
say more about the real properties of the distribution
function.

More informative results can be obtained from the mo-
ments (6.2) if we consider their large time asymptotics.
In Fig. 7 the corresponding results are presented for the
even values on m =2n (n=1-5). The log,R,, vs log,t
plot displays two different time intervals with almost
linear dependence, but with different exponents p,,, in the
formula

R, =R,,(t)~t"" (t—o). (6.4)
It is clear from Fig. 7(a) that the crossover occurs at
t ~4X10* T for two different regimes of the transport, as
mentioned above. The linear dependence of log;oR,, on
log,,t is more evident for ¢ >4 X 10*T [see Fig. 7(b) for de-
tails]. Values of u,, =u,,, obtained from Fig. 7(b), are
plotted in Fig. 7(c) and obey the law

Pom =Han =Hot+2un (6.5)

with puy=—0.02 and p=0.79. We cannot find in a reli-
able way a nonlinear dependence of u,, on n as much
larger computations are necessary to clarify the existence
or nonexistence of the multiscale transport. A physical
reason for the multifractal behavior could be the ex-
istence of several different resonance sets or several

3.87 x10°®

P(x,t)

FIG. 6. Same as in Fig. 5(a), but for time incident o= 10°T.
The statistics of the data set is collected from 7000 trajectories.
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FIG. 7. Data for moments of the distribution function
P(x,t). (a) Plot of (1/n)log;oR,,(t)+(n —1) vs log,et for the
time interval 10°<¢ <10°. The shift (» —1) is shown for con-
venience in displaying the curves. (b) Same as in (a) for the time
interval 4X10*<7 <10° when the transient evolution is sup-
posed to end. (c) Demonstration of the self-similarity: the
straight line 1 corresponds to the values u,, =u,, from the data
in (b) and line 2 corresponds to the Gaussian distribution and is
given for comparison.

different island hierarchy systems. Each of them gen-
erates its own set of flights and its own set of scaling pa-
rameters Ag and Ap. It was shown in [16] that for some
simplified situations

u=|InAg|/InAs . (6.6)

One can find u,/2=0.61 using the values (5.3), which
does not contradict u,/2=0.69 from Fig. 7(c).

VII. SELF-SIMILARITY NEAR THE X POINT
AND PARTICLE TRANSPORT

Here we would like to pose a question rather than give
an answer. Self-similarity due to the renormalization R,
transform (3.9), (3.10), and (3.12)

R,: H=AH,, e€=Ake,, A=expl4mwy/v) (7.1)

has been described in Sec. III. Transform (7.1) preserves
(mainly) a topology of the phase space near the X point.
It is interesting to understand how this invariant proper-
ty is resolved in the distribution function P(x,t). The
same question can be reformulated. The renormalization
(7.1) preserves exactly the separatrix map form (see Sec.
IT). This means that the distribution function Pg(x,t) for
the stochastic layer of the separatrix map is invariant un-
der the R, :

ﬁxps(x,t):kpps(g,?) 5 (7.2)

where A, is a constant that depends on A and X,7 are
transformed variables x,z. We shall not extend this state-
ment, but the existence of the invariant property of the
distribution function Pg(x,?) is evident. Now the refor-
mulated question is, to what extent does the distribution
function Pg(x,t), generated by the separatrix map,
represent the real transport properties of the system de-
scribed by the original Hamiltonian (2.1)?

We hope that there exists a positive answer in a re-
stricted form to this question. The main asymptotic
properties of P(x,t) and its moments {(x™) can be ob-
tained from the separatrix map rather than by using the
initial equation of motion (2.2). This conjecture seriously
simplifies the problem of obtaining the transport ex-
ponent and related properties. Nevertheless, we cannot
prove at the moment that the island set near the X point
is a “leading” set responsible for the most ‘“‘significant”
flights and trappings. Plots of P(x,t) versus x for 2000
trajectories during the time interval 2X 10*T for three
different values of € and y: €, =)»€_1(1)e, X=1; €,=¢,
x=0; and €, =A(1)e, x=m with v=5.4, 0y=1, €=0.01,
and A (1)=exp(27/5.4)=3.2013... (the same parame-
ters as in Fig. 2) display the self-similarity of the three
corresponding distributions. We plan to return to this is-
sue in a future work.

VIII. A CASE OF NORMAL TRANSPORT

In this short section we would like to present an exam-
ple of when, by an appropriate change in the two main
parameters € and v/, one can significantly influence a
character of transport. For the values e=1 and v=2
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0.0 X 6.28

FIG. 8. Poincaré section for v=2.05, e=1, and y=0. The
length of the orbit is 10° periods of perturbation.

(wp=1) there are no visible (or fairly large) islands. The
corresponding Poincaré section is given in Fig. 8(a),
where we introduce a small deviation of frequency
v=2.05 (wp=1) to show that an almost uniform and er-
godic distribution exists in a finite domain around v=2.
We have found that the corresponding distribution func-
tion is very close to the Gaussian one and that the trans-
port is normal, i.e., diffusional, in the absence of the is-
lands’ structure [see curve 2 in Fig. 7(c)].

The described property of a possibility to control the
transport is remarkable. For an application such as the
poloidal transport in a tokamak with the ergodic divertor
one can manipulate with the divertor field to reduce the

possibility of the anomalous bunching of particles and to
decrease the level of fluctuations of the loaded energy.

IX. CONCLUSIONS

The fine structure of the stochastic layer was always a
problem of great interest and became more significant as
the problem of anomalous transport in dynamical chaos
arose for different applications. In this article we have
considered a few related topics. We have derived an ex-
act renormalization transform R for the separatrix map
and shown that the transform R 2=R, approximately
preserves the dynamics near an unperturbed saddle (X)
point. These results are confirmed by a high accuracy
simulation. Exponential law for the local escape time
near the saddle point was found in [40], which seems to
be related to the self-similarity described above. Study of
particle transport discovered the anomalous transport ex-
ponents and time intervals with different physical proper-
ties. It is shown that the anomalous behavior of the long
term asymptotics for the moments of the distribution
function can be tied to self-similar properties of the
islands-around-islands construction. We have shown the
persistence of the shape of the distribution function un-
der the renormalization ﬁe transform. There exists a
slight instability of the data depending on the existence of
different intermediate asymptotics. It appears that the
continuation of computations of P(x,?) for longer times
is desirable.
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